Enhanced Efficacy of Human Brain-Derived Neural Stem Cells by Transplantation of Cell Aggregates in a Rat Model of Parkinson's Disease

نویسندگان

  • Eun Sil Shin
  • Onyou Hwang
  • Yu-Shik Hwang
  • Jun-Kyo Francis Suh
  • Young Il Chun
  • Sang Ryong Jeon
چکیده

OBJECTIVE Neural tissue transplantation has been a promising strategy for the treatment of Parkinson's disease (PD). However, transplantation has the disadvantages of low-cell survival and/or development of dyskinesia. Transplantation of cell aggregates has the potential to overcome these problems, because the cells can extend their axons into the host brain and establish synaptic connections with host neurons. In this present study, aggregates of human brain-derived neural stem cells (HB-NSC) were transplanted into a PD animal model and compared to previous report on transplantation of single-cell suspensions. METHODS Rats received an injection of 6-OHDA into the right medial forebrain bundle to generate the PD model and followed by injections of PBS only, or HB-NSC aggregates in PBS into the ipsilateral striatum. Behavioral tests, multitracer (2-deoxy-2-[(18)F]-fluoro-D-glucose ([(18)F]-FDG) and [(18)F]-N-(3-fluoropropyl)-2-carbomethoxy-3-(4-iodophenyl)nortropane ([(18)F]-FP-CIT) microPET scans, as well as immunohistochemical (IHC) and immunofluorescent (IF) staining were conducted to evaluate the results. RESULTS The stepping test showed significant improvement of contralateral forelimb control in the HB-NSC group from 6-10 weeks compared to the control group (p<0.05). [(18)F]-FP-CIT microPET at 10 weeks posttransplantation demonstrated a significant increase in uptake in the HB-NSC group compared to pretransplantation (p<0.05). In IHC and IF staining, tyrosine hydroxylase and human β2 microglobulin (a human cell marker) positive cells were visualized at the transplant site. CONCLUSION These results suggest that the HB-NSC aggregates can survive in the striatum and exert therapeutic effects in a PD model by secreting dopamine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P91: Auto Graft Transplantation of Adult Human Neural Stem Cells in Treatment of Traumatic Brain Injury as a Hypothesis

Traumatic brain injury (TBI) leading to 5 million deaths annually is 1 of the 5 major causes of morbidity and mortality worldwide. In Iran, accidents are the main cause of death in youth as well as a dominant factor in reducing quality of life. In developing countries TBI incidence as one of the worst consequences of these accidents is growing due to wide use of motor-vehicles. Therapeutic stra...

متن کامل

P111: Effect of Human Neural Stem Cells on Neural Hyperactivity in Kindeling Rat Models

The excessive electrical activity of neurons is reported in many diseases including: Parkinson's disease, Alzheimer's disease, and Epilepsy. Electrical overactivity in hippocampus accelerates the depletion of neural stem cell (NSC) and impairs the neurogenesis in hippocampus. It is believed that neurogenesis in hippocampus improves the cognitive functions. In this experiment, we use kindled mod...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

O13: Human Neural Stem/Progenitor Cells Derived from Epileptic Human Brain in A Self-Assembling Peptide Nanoscaffold Attenuates Neuroinlammation in Traumatic Brain Injury in Rats

Traumatic brain injury (TBI) is a disruption in the brain functions following a head trauma. Cell therapy may provide a promising treatment for TBI. Human neural stem cells cultured in self-assembling peptide scaffolds have been proposed as a potential novel method for cell replacement treatment after TBI. In the present study, we accessed the effects of human neural stem/progenitor cells (hNS/...

متن کامل

Human Olfactory Ecto-mesenchymal Stem Cells Displaying Schwann-Cell-Like Phenotypes and Promoting Neurite Outgrowth in Vitro

Strategies of Schwann cell (SC) transplantation to regenerate the peripheral nerve injury involves many limitations. Stem cells can be used as alternative cell sources for differentiation into SCs. Given the high potential of neural crest-derived stem cells for the generation of multiple cell lineages, in this research, we considered whether olfactory ecto-mesenchymal stem cells (OE-MSCs) derive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2014